
Maximiliano Firtman
@firt firt.dev

Browser Data Storage

mobile+web developer & trainer

This slide is preset
with animations

• HTML since 1996

• JavaScript since 1998

• Authored 13 books

• Free web.dev/learn/pwa

• Published 150+ webapps

Maximiliano Firtman
@firt firt.dev

Let’s Start!

What we'll cover

Web Storage IndexedDB

Cache Storage FileSystem

State of Browser Storage Debugging Tools

Quotas Persistance

Pre-requisites
github.com/firtman/browser-storage

http://github.com/firtman/intro-kotlin/intro-kotlin

Questions?

1

Introduction

Browser Data Storage

What we'll cover

Web Storage IndexedDB

Cache Storage FileSystem

State of Browser Storage Debugging Tools

Quotas Persistance

Why
Browser

Data Storage

•Increase User Experience

•Increase Performance

•Offline support

•We can store:

•User-generated content

•App's State

•Cached assets

•Authentication tokens

•Analytics

How does it
work?

•Using JavaScript we store and retrieve
data that is stored locally in user's device.

•Browsers manage the implementation and
security details.

•We should always treat it as data that can
disappear anytime.

•The data will persist between browsing
sessions.

•On most APIs, we won't require any
explicit permission from the user.

•It works also for PWAs and Hybrid apps.

•Data is NOT shared to the server* or
with other webapps
(*cookies is the only exception)

Some Important Concepts

Origin Web Client Device User

Some Important Concepts

Origin Web Client Device User

Origin

•Quick and Dirty: an Internet domain

•Protocol + Host + Port

•http://firt.dev
https://firt.dev
https://www.firt.dev
https://firt.dev:4000
are all different origins

•Be careful with

1. www prefix

2.country TLDs, such as:
 amazon.com, amazon.es

3. Subdomains, such as:
 firt.dev, learn.firt.dev

http://amazon.es

eTLD+1
groups

•Firefox doesn't see only origins and it
generated different policies per eTLD+1
groups

•eTLD is a name for a public suffix (.com,
.app, .co.uk, .ar, etc.)

•eTLD+1 is then, a registrable domain on
an eTLD

•all subdomains of it will be part of the same
group

eTLD+1
group sample

•.co.uk is an eTLD

•amazon.co.uk is an eTLD+1

•amazon.co.uk, www.amazon.co.uk,
www.primevideo.amazon.co.uk are all
part of the same eTLD+1 group.

http://co.uk
http://amazon.co.uk

Partitions
And Safari

•On most browsers, storage is per origin
or eTLD+1

•In this case, search.example will use the
same storage and data on both navigation
cases

Partitions
And Safari

•WebKit make a partition on these cases
to avoid fingerprinting and increase
privacy

Partitions
And Safari

•search.example will not share storage
in these cases.

•One partition is
search.example and other is
blog.example+search.example

Web Client

It's a piece of software than can navigate
to a website

•Browser instance

•Progressive Web App (PWA)
installed from a Browser

•Native app using a Web View

•Native app using an In-App browser
taking advantage of a browser API
 Custom Tabs (CT)
 SafariViewController

•Store app using a Trusted Web Activity
 (TWA)

Web Client

Sometimes it's the same Web Client

•Chrome on desktop browsing twitter.com
and an standalone Twitter PWA installed
from the same Chrome.

•Safari on iOS browsing YouTube and the
Twitter app In-App browser browsing
YouTube (it uses SFViewController).

•Chrome on Android browsing TikTok, an
installed app from the Play Store using a
TWA to TikTok, and an app running a
Custom Tab to TikTok.

http://twitter.com

On "native" apps,
client-side data is

contained to that device
and it goes to a cloud

backup

On web apps, the world is
much more complex

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

Many possibilities

http://www.disney.com

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

Data Storage

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA
?

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA
?

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA
? ?

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA
? ?

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

?

http://www.disney.com

Data Storage

www.disney.com

Chrome

Laptop
(same OS user)

Minnie Mickey

Phone Tablet

Instagram Chrome Safari Safari PWAPWA

http://www.disney.com

So the data will be available on same

Origin Web Client

Device and
OS account

User

(exceptions apply)

Device and
OS account

The data we
store will be

available
when

•Navigating to the same origin, and
same device, on same OS account
in any time in the future* and

•1) the same web client is used

•2) On desktop and Android:
a browser's tab and a PWA installed
from the same browser are used

•3) On Android:
a browser's tab and a Play Store app
using TWAs are used

•4) On Android, iOS and iPadOS:

 A default browser's tab and an In-App
 browser using CT or SafariVC are used

* some conditions apply

The data we
store won't be

available

• The same device using a different client

• On iOS and iPadOS, same device using
 Safari and icons in the home screen

• Same user using the same client on
 different device, even if logged in
 with same account

• A device restored from the cloud on most
 cases

We need to plan for the
best-effort, worst case

scenario:
the data won't be

available

On most common use
cases, the data is there

On some cases,
there will be many
copies of the data

If you host several web
apps in the same origin,
prefix storage names

to avoid conflicts

2

State of APIs

Browser Data Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage FileSystem Access

Cookies Web Storage

WebSQL Application Cache

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Web Storage

Session Storage Local Storage

Origin Private FS

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Web Storage

Session Storage Local Storage

Origin Private FS

NOT SUITABLE

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Web Storage

Session Storage Local Storage

Origin Private FS

NOT SUITABLE

PROBLEMS

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Origin Private FS

NOT SUITABLE

PROBLEMS

DEPRECATED

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Origin Private FS

NOT SUITABLE

PROBLEMS

DEPRECATED

DEPRECATED

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Origin Private FS

NOT SUITABLE

PROBLEMS

DEPRECATED

DEPRECATED

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Origin Private FS

NOT SUITABLE

PROBLEMS

DEPRECATED

DEPRECATED

TO BE DEPRECATED

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Origin Private FS

NOT SUITABLE

PROBLEMS

DEPRECATED

DEPRECATED

TO BE DEPRECATED

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB File and Directories

Cache Storage
FileSystem Access

Cookies

WebSQL Application Cache

Origin Private FS

NOT SUITABLE

PROBLEMS

DEPRECATED

DEPRECATED

TO BE DEPRECATED

Compatibility

Web Storage

Session Storage Local Storage

APIs for Browser Data Storage

IndexedDB

Cache Storage
FileSystem Access

Origin Private FSCompatibility

PROBLEMS

Data Storage APIs Comparison

IndexedDB

Cache Storage

Web Storage: Session
 Local

FileSystem Access

Stores... Using a key of... Grouped in... Up to...

JS Objects
and binary data

HTTP Responses

Strings

Files

A keyPath within
the object

HTTP Request

String

N/A

Object Stores in
Databases

Caches

N/A

N/A

Available Quota

Available Quota

N/A

12MB
5MB

New ideas!

Do you still want to use SQL?

Do you want to create your own API?

 Thanks to WebAssembly and
 IDB or FS APIs it's possible!

Web Storage

•Simple API

•It stores only one string per key

•The key for entries is also a string

•Synchronous API

 ⚠ performance issues

 ⚠ not available on Workers or
 Service Workers

•We should try to avoid using it today

•You can emulate them with IndexedDB

Web Storage

script.js

It offers the same API on localStorage and sessionStorage global objects

localStorage.setItem("key", "value");
const data = localStorage.getItem("key");

localStorage.removeItem("key");
localStorage.clear();

localStorage

It persist data between navigation and
browser sessions

Quota is typically 5MB per origin

 Strings are stored in UTF-16

 ⚠ At the end, it's around 2.5MB per origin

sessionStorage

It persist data within a browser's session

 Include page reloads and restores

 ⚠ What's a session on mobile?

Quota is typically between 5MB and 12MB

To increase performance,
quota and reachability,
let's use IndexedDB

instead of Web Storage.

3

Debugging Tools

Browser Data Storage

Workshop time

storage-quota.glitch.me

⚠

All browser data storage
is public to the user

4

Quotas and
Persistence

Browser Data Storage

Quota
includes

•One quota for all storages:

• All the data from APIs:

• Local Storage

• IndexedDB

• Cache Storage

• FileSystem (Origin Private FS)

• Service Worker registrations

• Web App Manifests from installed PWAs

Quota does
not include

•Cookies

•Files cached by the browser

•Session Storage

•Files created with the FileSystem Access
API (on the real FS)

Quotas per
browser

•Chromium: 60% of total disk space per
origin

•Firefox: 50% of total disk space with a
maximum of 2GB per group (eTLD+1)

•Safari: 1GB per partition with
increments of 200Mb with user's
permission

More
complexity

•Chrome Incognito mode:
5% total disk space

•Chrome with "Clear cookies and site
data when you close all windows":
300MB

•Other browsers Private mode:
from zero storage (ephemeral) to APIs
not available

Workshop time

filldisk.com

Storage per origin can be defined as

Best Effort Persistent

Best Effort

•It's the default state per origin

•Best Effort can clear the storage

• On Storage Pressure (low storage)

• After some time of inactivity

• With user intervention

•Persistent will keep storage unless

• User intervention happens

Persistent

•Persistent will keep storage unless

• User intervention happens

• Device is reset

It doesn't clear the data on storage pressure

iOS and
iPadOS

With Safari, Best Effort
Eviction can happen:

• On Storage Pressure

• After 7 days of inactivity

• Settings ➡ Safari ➡ Clear

With Installed PWA, Persistant Storage
Eviction can happen:

• Settings ➡ Safari ➡ Clear

Firefox and
Chromium-

based
browsers

By default, Best Effort
Eviction can happen:

• On Storage Pressure

• Using Settings ➡ Clear

• When uninstalling the PWA, the user may
have the option to delete the data

Persistent Storage can be requested by API
Eviction can happen:

• Using Settings ➡ Clear

• When uninstalling the PWA, the user may
have the option to delete the data

Persistent Storage Request

script.js

Firefox will ask the user, Chromium will grant or deny based on criteria

Persistent Storage Request

 const granted = await navigator.storage.persist();
 track('storage-persist-request', granted);

script.js

Persistent Storage Request

if (navigator.storage &&& navigator.storage.persist) {
 const granted = await navigator.storage.persist();
 track('storage-persist-request', granted);
}

script.js

Firefox will ask the user, Chromium will grant or deny based on criteria

Ask Current Persistent Storage Status

script.js

Ask Current Persistent Storage Status

if (navigator.storage &&& navigator.storage.persist) {
 const isPersisted = await navigator.storage.persisted();
 track('storage-persisted', isPersisted);
}

script.js

Ask Quota Information

script.js

Available on some browsers

Ask Quota Information

 const q = await navigator.storage.estimate();
 track('quota available', q.quota);
 track('quota usage', q.usage);

script.js

Available on some browsers

Ask Quota Information

if (navigator.storage &&& navigator.storage.estimate) {
 const q = await navigator.storage.estimate();
 track('quota available', q.quota);
 track('quota usage', q.usage);
}

script.js

Available on some browsers

Quotas are estimations;
they will never give you

exact data.

The Storage APIs return
promises and we are

using await; remember to
wrap those calls in an

async function

There is no way to disable
persistent storage once it

was granted

Chromium
criteria for
Persistent

Storage

Persistent Storage will be granted if

• It's an installed PWA

• It's in the bookmarks

•Push permission has been granted

• It has high site engagement

Safari criteria
for Persistent

Storage
Not specified ☹

This slide is preset
with animations

Our Project

•PWA for a Coffee

•Coffee Store

•Vanilla JavaScript

•Download assets and coding help

github.com/firtman/browser-storage

Workshop time

github.com/firtman/browser-storage

5

IndexedDB

Browser Data Storage

IndexedDB

•It's a NoSQL data store

•We will be using IndexedDB 2.0

•It stores JavaScript objects or bytes

•Every entry has a key

•The API is asynchronous

•No permission needed from user

•It's available on Windows, Workers and
Service Workers

•When storing objects, IDB clones them,
and cloning happens synchronously

IndexedDB

•The API is event-based

•With a thin wrapper we can convert
it in a Promise-based API

•It supports transactions

•It supports DB versioning

On top of IDB

•SQL on IDB
 JsStore, sqlite-worker

•Web Storage on IDB
 idb-localstorage, localforage

•Other APIs for IDB
 dexie, IndexedDB ORM, idb

Origin

Database Database

Object Store Object Store Object Store Object Store

Object Object

Object Object

Object Object Object Object Object

Object

Open a IDB
database with

name and version
number

Does it exists with
that name?

🔄 Upgrade
event

Is the version
greater than the browser

version?

✅ Success
Is the version

equal to the browser
version?

⚠ Error

YES

YES

YES

NO

NO

NO

Opening a DB

let db;
const request = indexedDB.open(name);

request.onerror = (event) =>= {

};
request.onsuccess = (event) =>= {
 db = event.target.result;
};

script.js

Standard API (non-event based)

Opening a DB

/// Open a DB
const db = await idb.openDB(name, version);

/// Open a DB and handle upgrade
const db = await idb.openDB(name, version, {
 upgrade(db, oldVersion, newVersion, tx, event) { }
 /// more event-based functions such as `blocked`
});

script.js

Using the idb Promise-based wrapper

Creating an Object Store

/// No key
const objectStore = await db.createObjectStore(name);

/// With keyPath
const objectStore = await db.createObjectStore(name,

{ keyPath: property_name });

/// With Key generator
const objectStore = await db.createObjectStore(name,

{ autoIncrement: true });

script.js

Deleting a DB

/// Delete a DB
await idb.deletedb(name);

/// Delete a DB and handle block
const db = idb.deletedb(name, {
 blocked(db) { }
});

script.js

Key Path

Key Generator

Keys for
Data Stores

Indices for
Data Stores

Quick Transactions

/// New value/object
await db.add(storeName, value);

/// Define a value/object in a store with a key
await db.put(storeName, value, key);

/// Delete a value
await db.delete(storeName, key);

/// Delete all values
await db.clear(storeName);

script.js

Quick Transactions

/// Get count of values/objects in a store
const count = await db.count(storeName);

/// Get all values/objects in a store
const values = await db.getAll(storeName);

/// Get one value/object by key
const value = await db.get(storeName, key);

script.js

Workshop time

Simple IDB storage

Workshop time

Database

Creating an Index

/// Index without unique values
objectStore.createIndex(name, property_name,
{ unique: false });

/// Index with unique values enforcement
objectStore.createIndex(name, property_name,
{ unique: true });

script.js

Quick Transactions from Indexes

/// Get all values/objects from an index
const values = await db.getAllFromIndex(storeName,
 indexName, valueFromIndex);

/// Get one value/object from an index
const value = await db.getFromIndex(storeName,
 indexName, valueFromIndex);

script.js

Advanced IDB

• Transactions

• Cursors

• Filters for Cursors

• Performance

6

Cache Storage

Browser Data Storage

Cache
Storage

•It's part of the Service Worker spec, but
not tied to the SW's scope

•We can create different storages (caches)
under a name

•Every cache and store HTTP responses
 (headers + body)

•It stores them under an HTTP request key

•The API is asynchronous

•No permission needed from user

•We can store, update, delete and query
HTTP responses by URL or request

•While typically we use it within a Service
Worker, it's available in the Window's
scope

Common
Scenarios

• Pre-cache Assets

• Cache Assets on the fly

• Serve assets from a Service Worker
 for performance and offline access

• Query assets available for offline usage

• Create an offline page

This slide is preset
with animations

Serving
Resources

The service worker will respond for
every request the PWA make

It can serve from the cache

It can forward the request to the network

It can synthesize a response

Any mixed algorithm is possible

Workshop time
Caching images

Workshop time
Service Worker

Cache Serving Strategies

Cache first Network first
Stale while
revalidate

This slide is preset
with animations

Updating
Resources

Files are saved in the client

Updating files in the server won't trigger
any automatic change in the client

We need to define and code
an update algorithm

It will need a process within your build
system for hashing or versioning files

Developer is in full control of
how to cache and serve the
resources of the PWA, and

how to manage API calls.

Workshop time
Delivering Assets

Workshop time
Caching App Shell

7

FileSystem

Browser Data Storage

FileSystem
Access API

•We can read and write files in the
real filesystem in user's device

•It will requiere user's permission

•It's Chromium-only

•It's an asynchronous API

•It doesn't count for the Quota

•It has an extension known as Origin
Private FileSystem (OPFS) that is
implemented by Safari

Opening a File

/// Have the user select a file.
const [handle] = await window.showOpenFilePicker();

/// Get the File object from the handle.
const file = await handle.getFile();

/// Get the file content.
/// Also available, slice(), stream(), arrayBuffer()
const content = await file.text();

script.js

Writing to an opened File

/// Make a writable stream from the handle.
const writable = await handle.createWritable();

/// Write the contents of the file to the stream.
await writable.write(contents);

/// Close the file and write the contents to disk.
await writable.close();

script.js

Writing to a New File

const handle = await window.showSaveFilePicker({
 types: [{
 description: "Test files",
 accept: {
 "text/plain": [".txt"],
 },
 }]
});
const writable = await handle.createWritable();
await writable.write(contents);
await writable.close();

script.js

Workshop time

8

Best Practices

Browser Data Storage

Database &
Performance

It's better to store small objects

Remember you can use Web Workers

You can create custom indexes for faster
access to collections of objects

Serverless
ideas

Export data using FileSystem

Export/Import data using QR codes

Blockchain-based data storage

Being a
Good Citizen

Don't store what you won't use

Clear the storage when it's not needed

Best-effort First

Capture quota errors and clear data

Offer the user a way to get
user-generated content outside

Data Sync

In case you also store data on the server,
many sync algorithms are available

Master Service Workers and sync APIs

Think about versions and data migration

Security

Remember all browser data storage is
public

It's insecure by definition

Don't store private or sensitive data

If you store authentication data, it should
be a token that can be revoked easily

Where to
continue

Web Workers

Service Workers

Sync APIs

IndexedDB performance

WebAssembly-based DBs

What we've covered

Web Storage IndexedDB

Cache Storage FileSystem

State of Browser Storage Debugging Tools

Quotas Persistance

Foto de freefoto.com

hi@firt.dev
@firt

mailto:hi@firt.dev

