Maximiliano Firtman
@firt firt.dev

Introduction to Flutter with Dart

/ firtman.github.io/intro-flutter

Frontend thm

http://firtman.github.io/intro-flutter

L et’s Start!

Q-

VWhat we'll cover

Basics of Dart and Flutter Android Studio
Testing and Debugging User Interface

Screen Navigation Working with Data

Pre-requisites
firtman.github.io/intro-flutter

http://firtman.github.io/intro-flutter

Questions?

Frontend Map

Native Clients Web / PWA

Frontend Map

Native Clients Web / PWA

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Android Apple Platforms Windows

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Android Apple Platforms Windows

Frontend Map

Native Clients Web / PWA

Official SDKs Cross-Platform SDKs

Android Apple Platforms Windows

Our Project

@1

e AP from scratcn
o i CEAVERGIE

e COffee Store
e0ocus on Material Design

Download assets and coding help

By Google

cOpen Source

eStatically typed language
e Type Inference

Multi-platform

-asy to Learn
eCoONcise - less ceremony
eModern Ideas

Null-saftety

Originally for internal web apps

Original intention: replace JavaScript

Current intention: front-end apps,
AngularDart, ana Flutter

Inspired by C, Java, JavaScript, Erlang,
Smalltalk, Swift/Kotlin (Dart 2.0)

Compiles to native, IL, JavaScript

We'll be using Dart 2.x
Play with it at dartpad.dev

Every Dart app has a main function

Full OOP language with type inference

Null-safety iIs available as an
optional feature in Dart 2.12

It feels easy to understand

It has features from many languages:

- Extensions
- Mixins
- Futures (async programming)

When compiling to Web: remember the
engine Is the JavaScript VM

L anguage lypes

Developers write code In Thensnip
Interpreted Languages Source Code J s
s,
Intermediate Languages | Bytecode JQ:_:/_/
dVd

Compiled Languages

e Machine Code .

Language lypes

You write code In And then snip

e

DART Language Machine Code

Time towrite some Dart code

Made by Google

Flutter is Google's Ul toolkit for building beautiful,
natively compiled applications for mobile, web,

desktop, and embedded devices from a single
l I tte r codebase.

e Declarative Ul framework
e Launched In 2018

e FOocus on modern Ul patterns:

e Single Source of Truth

e COMposable components

FI « Multiplatform
u tte r » Dependency Rendering

 Data Binding & Reactive programming
o Ul expressed In Widgets in Dart classes

e \Visual editor tooling iIn Android Studio

Mobile devices
-Androlid

10OS

-1IPadOS
Embedded devices
-Fucnsia OS
Desktop devices
-“Windows (win32 y UWP)
-MacOS

-LINUX

Web platform
-PWAS

Google Play Store

- AAB to Anaroid and Chromenook
Amazon AppStore

- APK to FireOS and Winaows 11
Huawel AppGallery

- APK to HarmonyOS

Apple AppStore

- |[PA to 10S and 1PadOS

Microsoft Store

- UWP to Windows 10/17

Not using OS SDKs

Your own "widgets” and design

It comes with two widget sets ready to use:
-Material

-Cupertino

They clone Android Material Designh and
Apple Human Interface guidelines

Pixel-perfect, high-performance
Same gestures and animations

a

Material vs. Cupertino

Flutter Platform Aware Widgets +
451 S 9 &

Flutter Platform Aware Widgets

Text Field

Material vs. Cupertino

Matida Delgado
uams 24 on Tue, M
Henry
LTS
Michael Scott
uUms 472 on Sat. M
Matilda Delgado

Turmns 34 on Tue Mar 2. 2021
Susana Rodriguez
Tums 3100 Sat. May 15

Michael Scott
Tuns 42 on Sat Mar 27 3
Nayantara

Susana Rodnguez
Iuns 31 on Sat, May 15, 2027

Nayantara
N'ams an The

Ba Ca

i.l,l'v'l’- e en Jue

Tommy Walker
! 1S 1 i T T

© § © 0 ©®© ©9 ® O

Decisions to Make

Multi Ul

Cupertino for
OS/iPadOS and

Design your

: El
own Visual Use Materia

for all devices Material for other

devices

pattern

Doesn’'t happen automatically

Multi user Widgets are not translatable

nterface There are design patterns to

reduce coding apps twice

IPA: 1IOS App (compatipble with IPadOS)
APK and AAB: Android App

Web build folder: ready to deploy - PWA
EXE: Windows (beta)

APPX: Windows Universal (alpha)

App: MmacOS (beta)

Product from
a Flutter
Droject

—_ -

Framework .::: Themes Cupertino ..:l (" Material ﬁ

-,’"

Dart

Widgets

Rendering

Animation Painting

Foundation

Engine

C/C++

Dart Runtime Plattorm Channels And more...

" - ’ B ""‘_...—"-- N '.l" "' b -
Platform . 0S Shell | § |ﬁ Android Shell) Embedder APl |

Flutter generates:
- Android Studio native SDK project

Flutter a_ﬂd - Xcode project for iOS
Nat‘ve - Web standard files
Pro|ects

We can have a hybrid Flutter app, part
Flutter, part native SDK or JavaScript

~lutter Console
Dart SDK
Flutter CLI

Flutter Dev I100IS

—lutter SDK

- IDE from JetBrains (IntelliJ)

- User Interface Designer (nhative)

- Android SDK
. - Android NDK
AﬂdI’O\d Flutt d Dart ort (plugin)
- - Flutter an art su r Uuagl
Studlo PPOTLAPTES

- Profiler and other tools

- AVD - Android Virtual Devices
- ADB - Android Debug Bridge
- Gradle

- Code Editor
- Flutter and Dart plugins

Visual Studio | |
- Integration with emulators and
Code

DevTools

- Plenty of additional plugins and
services

- IDE
- User Interface Designer (native)
- SwiftUl
Ycode - Profiler and other tools
- 10S Simulator
- Xcode CL|
- NO Flutter or Dart support

- macOS only!

To test and/or compile
OS or IPaaOS
applications we need a
MacOS gevice

[1me to create our project

Dart vs other
languages

Dart uses AOT compilation to create
native code for Android and i0OS

Android Runtime VM is not used

Dart compiles to VM-code for
desktop

Dart transpiles to JavaScript for the
Web

We can create plugins to connect

Dart with
- Android and 10S SDK

- Web APIs
- Native SDKs

Flutter Code

Dart code

|

Flutter framework

JavaScript code

Kotlin/Java JavaScript
Plugin Plugin

Web engine
Browser PWA

Whnat we write

Dart code

Obj-C/ Kotlin/Java JavaScript
Swift Plugin Plugin

VWhen using thirg-party
DIUGINS We Need to check
Dlattorm compatipility

Within the main function, we call
rUNAPP and pass a widget instance
u tte r as an argument

Main Concepts That creates a Widget Tree

Widget class

Widget

StatelessWidget StatefulWidget InheritedWidget

OurCustomW.idget FlutterFrameworkWidget

Basic unit for user interface

Only property: key

They have a build method that
returnsother Widgets

‘ They typically have a box within the
| canvas but there are invisible
widgets as well

F I u tte r , There are mainly two kinds:
_ * Stateless widgets (literal or
Widgets parametrized)

* State-full widgets

Flutter includes +150 widgets! &)

Widget Constructors

WidgetName ()

var widget

WidgetName(property: value,
property: value)

var widget

var widget = WidgetName.builder()

Standalone

Widgets

Containers Containers

for one for
Child Children

child chilaren

oroperty oroperty
Wilelel=) <WIidget>[]

Complex
Containers

different
oroperties

WWilelel=)s

import 'package:flutter/material.dart’;

Welcome to Flutter VOid main() =2 runApp(MyApp())'

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(
title: "Welcome to Flutter’,
‘< 1t home: Scaffold(

That's it appBar: AppBar(

title: Text('Welcome to Flutter'),
),
body: Center(

child: Text('That's it!'),

Scaffold
AppBar

Container, Expanded

‘ , ElevatedButton, TextButton,
| lconButton

Text, RichText
Flutter

Common Widgets

Column, Row, Wrap
Center

Padding

lmage, Icon

Creating Widgets

Stateful Stateless

Stateless widget

StatelessWidget {

Name ({Key? key}) : (key: key)

@override
Widget build(BuildContext context) {
Container()

TIP: Use stless 1n Android Studio/VS Code for snippet

Stateful widget

Name StatefulWidget { _NameState State<Name> {
Name ({Key? key}) : (key: key) @override
Widget build(BuildContext context) {

@override Container()
_NameState createState() => _NameState() }

) :

TIP: Use stful 1n Android Studio/VS Code for snippet

-

Stateful Widgets

A
"N :
D). 8
. b
NS
"
N
k.
. \l
3 q
"'\
K’ |
.’ .
¥ «
0. °
R 0
N X
- !

A
X
9) "
.‘-‘ N
AR
D
K.
AR
K’ |
..']
F «
9

]
2

. ¢
A
'

(d

J

‘

)

<

Most of the time, we don't touch the
Widget class

We use the builld method of the State class
State properties are set In the State class

State properties MUST NOT pbe changed
directly

We change state values by calling:
setState(O })

setState recelves a Function as an argument;
that function should update the state

The lifecycle will call build again and the
new state should render an updated Ul

Staterul
widgets

Most of the time, we don't touch the
Widget class

We use the build method of the State
class

State properties are set In the State class

State properties MUST NOT be changed
directly

We change state values by calling:
setState((O { })

setState recelves a Function as an
argument;
that function should update the state

The lifecycle will call build again and the
new state should render an updated U

mailto:hi@firt.dev

