
Professional JS
Features You Need to Know

Maximiliano Firtman
firt.dev

x.com/firt

linkedin.com/in/firtman

github.com/firtman

About me
Maximiliano Firtman

MOBILE+WEB DEVELOPER

HTML since 1996
JavaScript since 1998, +150 web apps

AUTHOR

Authored 13 books, +70 courses

About me
Maximiliano Firtman

About me
Maximiliano Firtman

Frontend Courses

Mobile App Courses

Backend Courses

What we will cover today

Introduction to ECMAScript

Recap of ES2015 (ES6)

Language Enhancements

Array and Collection Enhancements

Asynchronous Programming

Advanced Techniques

Pre-requisites

Basic JavaScript experience

OOP experience

A web browser

Workshop Site
firtman.github.io/projs

http://firtman.github.io/projs

Questions?

Introduction

Question for You...

Which version of JavaScript are you
currently using?

Warning

JavaScript is not versioned

Using JavaScript in the browser

index.html

<script src="app.js" defer></script>

Using JavaScript in Node or modules

app.js

console.log("We don't specify a version");

Terminal >

node app.js

Deprecated syntax for JS versioning

index.html

<script language="JavaScript1.1">

</script>

<script language="JavaScript1.8.5">

</script>

It was available for Mozilla (Netscape and Firefox) only, from 1996 to 2010

Brief History of
JavaScript

• 1995: Brendan Eich created JavaScript™

• 1996: Netscape 2 added JS™ 1.0

• 1996: IE 3 added support for JScript™

• 1997: JS 1.0 became an ECMA Standard,
known as ECMA-Script (ES)

• 1997: IE 4 supported ES1

• 1999: ES3 was released

• 2000-2009: The dark ages

• 2009: ES5 was released

• 2015: A new ES process started with ES6

Warning

JavaScript is a trademark of Oracle
Corporation in the United States.

Important

For legal issues, most companies use ECMAScript when
implementing or talking about JavaScript.

ECMAScript is free to use and it's the name we use to
version the language.

ECMA-262
Aka ECMAScript aka ES

ECMA-262
Aka ECMAScript aka ES

ECMAScript • It's a standard for scripting languages

• TC-39 is its technical committee

• JavaScript used by browsers or Node are
ECMAScript engines

• Other engines: ActionScript, JScript.NET

• Since ES2015 (or ES6) we have one version
published per year

• As developers, we can't specify which
version we want to use, it's up to the engine
where the script is executed

Warning

If you use syntax of an ES version
that is not supported on the engine
running it you may get a syntax error
or runtime exception.

Important

To know the ECMAScript version that your engine uses:

• Node: check node.green

• Browsers: check caniuse.com/ecmascript

TC-39
Process

• Every proposal goes through a process

• Stage-0: Strawperson

• Stage-1: Under Consideration

• Stage-2: Draft

• Stage-2.7: Approved

• Stage-3: Candidate

• Stage-4: Complete, ready for ES-next

• Backward compatibility is forced

• Most changes are sugar syntax from the
previous version

Modern
Versions of
ECMAScript

• From ES1 to ES5 versions were using
numbers

• From ES6, also known as ES2015, the
year of release is also used as version.

• From ES6 TC-39 has an annual version
process so there will be an ES version for
every year since 2015.

• While ES14 do exist as a version number,
the community uses the year version
from ES7, so it's ES2023.

Warning

When we talk about ECMAScript we
are not talking about platform APIs

Warning

Most platform APIs are defined by
the W3C, OpenJS Foundation, and

other organizations.

Important

ECMA Internationalization API under the
ECMA-402 is a separate ECMAScript-related
spec separated from the core spec.

ES.Next • It's a non-official name to talk about
features that will be in next version of ES

• Stage-3 or Stage-4

• It's almost guaranteed they will be
implemented in the spec

• Some browsers may already support
some of those abilities

To use modern ES syntax on older engines

Polyfills Transpilers

Transpilers • They convert ES modern code into older
ES code, such as ES5 or ES6 (2015)
including polyfills, when needed.

• The most common solutions:

• Babel

• TypeScript

• ESBuilder

• They may use plugins

• ES.Next

• JSX and non-standard supersets

With a Transpiler

You write

ES2024
You deploy

ES2015
TRANSPILER

With a Transpiler

You write

ES.Next
+JSX

You deploy

ES5
TRANSPILER

Recap of ES2015 (ES6)

ES6 or ES2015 • It was one of the major upgrades to the
language

• It's safe to use it on every browser today

• Class syntax for OOP

• Block scoped variable definitions

• ES Modules

• Arrow functions =>

• Promises

• And many more features!

Warning

We will leave some advanced ES6
topics for later, organized by topics

Definition

ES Modules

Standardized way to organize and reuse
JavaScript code across different files using
import and export statements for better
modularity and maintainability.

Working with Separate JavaScript Files
Historically, within the browser all the items were available globally to all files

HTML

Script 1 Script 2

Working with Separate JavaScript Files
Historically, within the browser all the items were available globally to all files

HTML

Script 1 Script 2

var / function var / function

Working with
different files
in classic ES5
mode

• They use the same global context

• One script can't include or load other
scripts (worker exception)

• Can't modularize behavior or data

• Node.js used the CommonJS pattern to
emulate modules

Working with Separate JavaScript Files

script1.js

printUser(user);

Historically, within the browser all the items were available globally to all scripts loaded

var user = {

 firstName: "Brendan"

}

function printUser(u) {

 console.log(u.firstName);

}

script2.js

ES Modules • ES6 included Modules

• They work as a container isolated from the
global object (window, global, self)

• For node, it's replacing CommonJS
modules using require().

• Each module works in a separate file

• For the browser ".js"

• For node, ".mjs" by default

• The global scope creates a module import
tree as soon as it's parsing modules

ES Modules • A module can export items:

• Variables

• Functions

• Class declarations

• Objects

• It can have one default import

• A module can import other module's
items totally or partially

Working with Modules
The HTML <script> tag needs type="module"

HTML

Script 1 Script 2

Working with Modules
The HTML <script> tag needs type="module"

HTML

Script 1 Script 2

var / function

Working with Modules
The HTML <script> tag needs type="module"

HTML

Script 1 Script 2

import var / function export var / function

Working with Modules

script1.js

printUser(user);

From ES6 using <script type="module" src="script1.js">

var user = {

 firstName: "Brendan"

}

function printUser(u) {

 console.log(u.firstName);

}

script2.js

Working with Modules

script1.js

printUser(user);

From ES6 using <script type="module" src="script1.js">

var user = {

 firstName: "Brendan"

}

function printUser(u) {

 console.log(u.firstName);

}

script2.js

❌ Error

Working with Modules

script1.js

printUser(user);

From ES6 using <script type="module" src="script1.js">

export var user = {

 firstName: "Brendan"

}

export function printUser(u) {

 console.log(u.firstName);

}

script2.js

❌ Error

Working with Modules

script1.js

import { user, printUser } from
 './script2.js';

printUser(user);

From ES6 using <script type="module" src="script1.js">

export var user = {

 firstName: "Brendan"

}

export function printUser(u) {

 console.log(u.firstName);

}

script2.js

Working with Modules

script1.js

import Services from
 './script2.js';

Services.printUser(Services.user);

From ES6 using <script type="module" src="script1.js">

var user = {

 firstName: "Brendan"

}

function printUser(u) {

 console.log(u.firstName);

}

default export { user, printUser }

script2.js

Warning

When importing from modules path
must start with "/", "./" or "../" and
you should always use full URL
(including in most cases ".js")

Lab time

Workshop Site
firtman.github.io/projs

http://firtman.github.io/projs

Time to see what's new after ES6 (ES2015)

We won’t cover features by ES version but by
category, explaining for each one from which version

it’s available (ES2016-ES2024).

Language Enhancements

Language
Enhancements • Small changes

• GlobalThis

• Optional Catch Binding

• Function toString

• New Operators

• Class Declaration

• Object

• Strings

• Numbers

Lab time

Array and Collection Enhancements

Array and
Collection
Enhancements

• Iterators and for..of

• Generators

• Array Methods

• Change Array by Copy

• Set and Maps

• Typed Arrays

Lab time

Asynchronous Programming

Asynchronous
Programming

• Promises Recap

• Async/Await

• Promises Improvements

• Asynchronous Iteration

• Top-level await

• Advanced

• Atomics

• SharedArrayBuffer

Lab time

Advanced Techniques

Advanced
Techniques

• Some small changes

• Dynamic Import

• Proper Tail Calls

• Proxies and Reflect API

• Tagged Templates

• WeakRefs and FinalizationRegistry

• Regular Expressions Enhancements

Lab time

Recap

Recap • JavaScript and ECMAScript

• We version ECMAScript every year

• Syntax sugar

• Transpilers

• ES6 Review

• Language enhancements

• Collections and Array

• Asynchronous Programming

• Advanced Topics

Thanks!

Maximiliano Firtman
firt.dev

x.com/firt

linkedin.com/in/firtman

github.com/firtman

