Practical Web App Patterns

Maximiliano Firtman
firt.dev

X x.com/firt
m linkedin.com/in/firtman

o github.com/firtman

About me

Maximiliano Firtman

MOBILE+WEB DEVELOPER

HTML since 1996
JavaScript since 1998, +150 web apps

AUTHOR

Authored 13 books, +70 courses

oney J|IHOW gIM nancusiecizaa Nosuvid

Programsiug the fAo'sh Wal, 2ud Edition

m.a. Mobile Web Rige%iE i

g Programmare per il Web Mobile firusa u w

—

POl R S e e | 7

C

! oreiy [| BEO-TIDOI'PAMMUPOBAHNE _:om ,

Q:mj. ?:Tmr iny £ I e
- ﬂ.ﬁ: Mabile B iF & E TR <2 5

CRBLLY
£2 - e Tl

}.m?.omaBmemH:m
-} Mobile Web

[

5 ANZIMIONZS 0LV 20
B m“z _v.l_zo_u,.._..u:& .—-m z mm< GaM -
= NOD STTAOW z
\= ._—-m z SOT10N¥YSIq ° _u 0 =
135 VAVT NI S3MVINTI0 M DYooy AN - POIES
w4 oo kpd Gd Lo wos g ¢ g 5\—-<- ‘.W .e
e S 001 1ol ASgy LS (] S0 x < —o< u,.nm &

-
>.”—v>x Web 2.0 para prafesionales wadmitans Fiomen A

About me

Maximiliano Firtman

000

0ol

002

003

004

005

006

007

008

009

010

Learn PWA

Progressive Web Apps

Getting started

Foundations

App design

Assets and data

Service workers

Caching

Serving

Workbox

Offline data

le

). web.dev > Learn > Learn PWA!

Learn PWA

A course that breaks down every aspect of modern progressive web app

development.

Welcome to Learn Progressive Web
Apps!

Welcome to Learn Progressive Web Apps!

This course covers the fundamentals of Progressive Web App development in
easy-to-understand pieces. Over the following mcdules, you'll learn what a
Progressive Web App is, how to create one or upgrade your existing web
content, and how to add all the pieces for an offline, instzllable app. Use the
menu pane to navigate the modules. (The menu is at left on desktop or behind

the hamburger menu on mobile.)

You'll learn PWA fundamentals like the Web App Manifest, service workers,
how to design with an app in mind, how to use other tools to test and debug
your PWA. After these fundamentals, you'll learn about integration with the
platform and operating system, how to enhance your PWA's installation and
usage experience, and how to coffer an offline experience.

About me

Maximiliano Firtman

Frontend Waote/u

Frontend Courses
Mobile App Courses

Backend Courses

What we will cover today

Design Patterns

Apply many on three projects
Classic Design Patterns applied in JS
Single Page Applications

Multi Page Applications

Data and State Management

Some other ideas

Pre-requisites

JavaScript experience
Vanilla JavaScript basic concepts
A web browser

A code editor

Workshop Repo

firtman.qithub.lo/webapp-patterns

Questions?

Definition

Design Pattern

A design pattern iIs a reusable template for
solving common software design problems,
enhancing code readability and efficiency
and creating a common vocabulary.

Design Patterns
Elements of Reusable
Object-Oriented. Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Y. ¥

Coney ant © 1994 M C |

Foreword by Grady Booch

b

SRS ONILNAWOD TVYNOISSIJ0¥d AFTSIM-NOSIAAY

Components of a Design Pattern

Name Problem Solution

Context Consequences ENIIES

Why is it

) » We have complete freedom
important for

Vanilla JS

projects? » We need to set guidelines to improve:
» Reusability
» Scalability

» Consistency
» Efficiency
» Debugging

ldea

Anyone can create a design pattern. It typically starts as a
blog post or an article setting a name and explaining the
problem and the solution that was already implemented in
a real-world example.

Warning

Don't use design patterns just
because It sounds cool.

Fallures while
using design
patterns

» Overengineering

» Misapplication

o Inflexibility

o Learning Curve for the team
« Complexity

« Performance Overhead

Definition

Antipattern

Practices that may initially seem beneficial but
ultimately lead to poor outcomes. They are typically
counterproductive and can introduce issues such as
iIncreased complexity, decreased performance, and
maintainability problems.

Important

You probably know many design patterns even if you don't
recognize them initially as that

Definition

Vanilla JavaScript

The usage of the core language and
browser APIs to create web apps without
any additional libraries or frameworks
added on top

Vanilla JS: You Might Not Need a Framework

Frontend Masters Course

Design Patterns for VanillaJS Web Apps

Classic Web Specific Single Page Apps

Data and State

Multi P A
ultli Page Apps Management

Warning

We won't cover all the design
patterns available.

Design Patterns
Elements of Reusable
Object-Oriented. Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Y. ¥

Coney ant © 1994 M C |

Foreword by Grady Booch

b

SRS ONILNAWOD TVYNOISSIJ0¥d AFTSIM-NOSIAAY

Classic Patterns » Typically around OOP solutions

» They are categorized in
» Creational
e Structural
» Behavioral

o In JavaScript (<= ES5) there were many
design patterns that

Important

In JavaScript there are many ways to implement the
same design pattern, thanks to the dynamic nature of

the language

Warning

Don't implement design patterns as if

you are writing Java. Use the ideas
and Implement them with the power
of JavaScript.

Definition

Creational Design Patterns

They aim to solve the problems associated with
creating objects in a way that enhances flexibility
and reuse of existing code. The primary purpose of

creational patterns is to separate the logic of object
creation from the rest of the code.

Smgleton » Problem to Solve: Ensure that a class has

only one instance and provide a global point
Of access to it.

« Solution: Restrict instantiation of the class
to one object and provide a method to
access this instance.

« Use Cases:
» Managing a global configuration object.
 Database connection pooling.
» Logging service.

« State management.

Singleton

app.Js
const Database = {
open: async () => {}
sendQuery: async (query) => {}
I

Facto 'y » Problem to Solve: Object creation can

become complex and may involve multiple
steps, conditional logic, or dependencies.

 Solution: The factory pattern encapsulates
the object creation process within a separate
method or class, isolating it from the rest of
the application logic.

o Use Cases:
o Ul element creation
o Different types of notifications

« Data Parsers

Factory

app.Js

class PDFReader extends Reader {}

class CSVReader extends Reader {}

class SQLReader extends Reader {}

class Reader {
static getReader (url) {
// based on the return type of the URL

// we return one of the possible readers

Definition

Structural Design Patterns

Solutions for composing classes and objects to
form larger structures while keeping them flexible
and efficient. They focus on simpliftying
relationships between entities to ensure system
maintainability and scalability.

Decorator » Problem to Solve: Add additional
runctionality to objects dynamically without
modifying their structure.

» Solution: Wrap an object with another
object that adds the desired behavior.

e« Use Cases:

 Adding logging, validation, or caching to
method calls.

 Extending user interface components with
additional features.

» Wrapping API responses to format or process
data before passing it on.

Decorator

app.Js

class Button {

render () {}

class DecoratedButton extends Button {
render () {
super.render () ;

// Decorating code

Adapter

» Problem to Solve: Allow incompatible
interfaces to work together.

 Solution: Create an adapter that translates
one interface into another that a client
expects.

e« Use Cases:

» Integrating third-party libraries with different
interfaces into your application.

« Adapting legacy code to work with new systems
or APIs.

» Converting data formats.

Mixins

» Problem to Solve: Share runctionality

between classes without using inheritance.

 Solution: Create a class co
that can be used by other ¢
it to multiple classes.

e« Use Cases:

ntaining methods

asses and apply

» Integrating third-party libraries with different
interfaces into your application.

« Adapting legacy code to work with new systems

or APIs.

» Converting data formats.

MixXins

app.Js

let sayHiMixin = {
sayHi() { alert(Hello ${this.name}); }
b3

class User {

Nname

Object.assign(User.prototype, sayHiMixin);

Value Object

 Problem to Solve: Re

oresent a value thatis

immutable and aistinc
nased on its properties rather than its identity.

' from other objects

o Solution: Create a class where instances are

considered equal if all their properti

equal and ensure the object is imm

o Use Cases:

€S d

utab

e
.

« Representing complex data types like money,

coordinates, or dates.

Value Object

app.Js

class Money {
constructor (amount, currency) {
this.amount = amount;
this.currency = currency;
// Freeze the object to make i1t immutable
Object.freeze(this);
¥
equals(other) {
return other instanceof Money &&
this.amount === other.amount &&
this.currency === other.currency;

Definition

Behavioral Design Patterns

Deal with object interaction and responsibility
distribution. They focus on how objects
communicate and cooperate, ensuring that the
system is flexible and easy to extend.

Observer » Problem to Solve: Allow an object (subject)

to notity other objects (observers) about
changes in its state without requiring them to
be tightly couplea.

» Solution: Define a subject that maintains a
ist of observers and notifies them of any
state changes, typically by calling one of their
methods.

o Use Cases:
« Event handlers
« Real-time notifications

« Ul updates

Observer

app.Js

class Subject {
observers = new Set();
addObserver (observer) { this.observers.add(observer); }
removeObserver (observer) { this.observers.delete(observer); }

notifyObservers(message) {
this.observers.forEach(observer => observer (message)) ;

// Usage
subjectl.addObserver(message => console. log("Event fired"));

Template
Method

« Problem to Solve: Define the skeleton of an
algorithm that will change on different
implementations.

« Solution: C

)

Mmethod -
nake subclasses to override s

reate a class with a template

‘ha

{

Coutlines the algo

ne algorithm.

e Use Cases:

» Data Processing

« Form Validation

ithm and

pecific steps of

Template Method

app.Js

class DataProcessor {
process() {

this.loadData() ;

this.processbData() ;

this.saveData();

class JSONDataProcessor extends DataProcessor {
loadData() { /* code */ }
processData() { /* code *x/ }
saveData() { /* code x/ }

Memento Problem to Solve: Capture and externalize

an object's internal state so that it can be
restored later, without violating
encapsulation.

» Solution: Create anobject that stores the
state of the original object and provide
methods to save and restore the state.

« Use Cases:
» Undo/Redo functionality
 Saving a game or app session

» Time-travel debugging

Memento

app.Js

class HistoryManager {
history = [];
push(state) {
this.history.push(createMemento()) ;

}

pop() {
1if (this.history.length === 0) return null;
return this.history.pop();

}

Command » Problem to Solve: How to avoid hard-wiring

a request from its invoker.

» Solution: create an object that is used

to encapsulate all information needed to
berform an action or trigger an event at a
ater time

o Use Cases:

» Manage the actions of your app (such as Add,
Delete, print, save, load)

LAB » Simple Todo app with Vanilla JS

Todo Masters » The code works but it has several problems
» What if we want to:

 Save the list locally?

» Add keyboard shortcuts?

» Make it more complex in the future?

« Create an undo action?

Let's decouple the project using design
patterns with a JavaScript twist.

Lab time

Workshop Repo

firtman.qithub.lo/webapp-patterns

Definition

Single Page Application (SPA)

Type of web application that interacts with
the user by dynamically rewriting the current
web page with new data from the web server,
instead of loading entire new pages.

Lazy Load

» Problem to Solve: Loading too many
JavaScript files when the app loads lead to
performance and memory usage problems.

 Solution: Use Dynamic Imports from
FCMAScript to load modules when needed.

e« Use Cases:

» Load web components when you need them

» Load routes in SPA when you access them for the
first time

View . « Problem to Solve: \When changing between
Transitions routes, there are no transitions as in most

apps
o Solution: Use the new View Transitions API.

o Use Cases:
« Animate page change

« Morph elements between pages

HTML
Templates with
Interpolation

» Problem to Solve: \When using templates for
Web Components, you can't express in the
HTML the bindings you want.

« Solution: Use a tri
I

templates that w
dynamic data fro

o Use Cases:

ck using with

let us interpo

M the HTML.

=S string

ate with

 Defineinthe HTML the bindings for the data

ROUtmg » Problem to Solve: \When working with SPA,

Metadata web page metadata, such as title, SEO data
and other information stays static not matter
the current URL.

» Solution: Update the metadata dynamically
when the route changes.

« Use Cases:
« Adapt the theme-color
» Change thetitle

» Update the favicon based on the current page

LAB « SPA for a Coffee Store

» We will see some patterns implemented:

Coffee Masters modularization with Web Components

« Check the course VanillaJS: You Might Not
Need a Framework for more info
« We will implement new patterns:
* Lazy Load
* View Transitions for SPA
* HTML Templates
* Routing Metadata

Lab time

Definition

Multiple Page Application (MPA)

Traditional web application architecture
where each page of the application is served

separately using a new request from the
browser to the server.

View . » Problem to Solve: \When changing pages,
Transitions for users can see a white flash between page
M PA oads

o Solution: Use the View Transitions API for
cross-documents.

o Use Cases:
« Make MPAs feel like SPAs

« Morph one element from one HTML to another
element in the next HTML

Prefetch

« Problem to Solve: \When the user wants to

navigate to a new page, there is a
performance penalty

 Solution: Use different technigues to
nage, including

orefetch the r
using the Cac

ext possible

ne Storage w

It

Workers or the Speculation

e Use Cases:

N Service

Rules API.

» Prefetch or pre-render the most probable next
page on every HTML

HTML

» Problem to Solve: Every new page

Templates for navigation downloads a whole HTML
MPA including the header, footer and navigation
again.

« Solution: Use service workers to download

new page and m

arge t

Dage template ¢

e Use Cases:

ent-s

oartial HTML files when you navigate to a

nem with a master

ide.

» Improve Performance for MPAs

LAB » MPA for a Recipe website

« We will implement new patterns:

Cooking

* . .« s
WENEE View Transitions for MPA

* Prefetch

Lab time

Promisify Data

» Problem to Solve: Data management tends
to change in the future, and when working
with static hardcoded data is difficult to move

later to an async call.

» Solution: Use Promises to deliver al
including sync data by resolving the
statically.

o Use Cases:
« Hardcoded data

' data,

Promise

 Access to sync APls, such as Local Storage

Promisify Data

app.Js

// Old version
function getImportantData() {

return data;

// New version
function getImportantData() {

return Promise.resolve(data);

Flux » Problem to Solve: In large scale

applications, managing the state of the app
becomes too complex and unpredictable.

« Solution: Use unidirectional data flow,
simplitying the architecture ana
predictability of state changes.

« Use Cases:
« Data Storage
» Form intense applications

e E-commerce

e CMSs

Redux animation

Based on Flux

AP]

Actions

94013

Lazy Sync » Problem to Solve: Syncing aata to the

server takes time and it's not always possible

 Solution: Make all the sync to the server
asynchronously and detached from the Ul.
» Use Cases:
« Save data and analytics

« Downloading news

« Updating app's components in the background

ldea

JS

For more information on this topic, check the course
JavaScript in the Background at Frontend Masters

Proxy

» Problem to Solve: We don't have always
control on the access to an object,
including to detect when some value
changes.

» Solution: Use a Proxy object instead of the
object directly.

« Use Cases:
 Reactive Programming
« Adding a security layer

» Logging all access to important objects

ldea

v

JS

For more information on this topic, check the course Vanilla
JS You Might Not Need a Framework at Frontend Masters

Middleware

» Problem to Solve: Handling tasks that affect
multiple parts of the application, like logging,

secC
aut

Urity checks, error handling,

nentication is difficult.

» Solution: insert layers of processing
between the initial request and the final
response, like going through a pipeline.

e Use Cases:

o API| access

« Database access

Web App

Classic Patterns » Progressive Web Apps

» Responsive Web Design
» Mobile First
» Oftline First

|dea
>m§
e

For more information on this topic, check the course
Progressive Web Apps at Frontend Masters

Progressive
Enhancement

» Problem to Solve: Not every platform

supports all the APIs that we want to use.

» Solution: Sta
WOrks everyw

't by offering a solution that

e

thatonly ifthe p

e« Use Cases:

e and add layers on top of

atform supports the API.

 Access hardware and platform APIs

o Offline support

 Accessibility

HTML
Streaming

« Problem to Solve: On |3

browser doesn't render tr

"oe pages, the

e

Dage or data until

all the response was sent and downloaded.

 Solution: Use Streams and Service Workers
to render the HTML response partially in
chunks as soon as they are received.

o Use Cases:

 Improve performance on initial page load

« Render data ATF initially

Streams with Service Workers

Document rendering without streaming:

Fetch Wait for Parse entire

full response response Render

Document rendering with streaming:

Render
Markup arrives over Markup is parsed and

the wire in chunks rendered as chunks arrive

Virtual DOM + Problem to Solve: \Working with the DOM

directly is expensive

 Solution: Create a virtual DOM in memory,
work with it and synchronize it with the real
DOM once it's a good time for it.

e« Use Cases:

« Complex user interfaces with lot of elements

o Large lists with re-order and CRUD operations

Recap « What's a design pattern

» Classic Design Patterns in
JavaScript

« Patterns for SPA
e Patterns for MPA

« Patterns for Data and State
Management

e Other ideas

Thanks!

Maximiliano Firtman
firt.dev

X x.com/firt
m linkedin.com/in/firtman

o github.com/firtman

