
Practical Web App Patterns
with Vanilla JS

Maximiliano Firtman
firt.dev

x.com/firt

linkedin.com/in/firtman

github.com/firtman

About me
Maximiliano Firtman

MOBILE+WEB DEVELOPER

HTML since 1996
JavaScript since 1998, +150 web apps

AUTHOR

Authored 13 books, +70 courses

About me
Maximiliano Firtman

About me
Maximiliano Firtman

Frontend Courses

Mobile App Courses

Backend Courses

What we will cover today

Design Patterns

Apply many on three projects

Classic Design Patterns applied in JS

Single Page Applications

Multi Page Applications

Data and State Management

Some other ideas

Pre-requisites

JavaScript experience

Vanilla JavaScript basic concepts

A web browser

A code editor

Workshop Repo
firtman.github.io/webapp-patterns

Questions?

Introduction

Definition

Design Pattern

A design pattern is a reusable template for
solving common software design problems,
enhancing code readability and efficiency
and creating a common vocabulary.

Components of a Design Pattern

Name Problem Solution

Context Consequences Examples

Why is it
important for
Vanilla JS
projects?

• We have complete freedom

• We need to set guidelines to improve:

• Reusability

• Scalability

• Consistency

• Efficiency

• Debugging

Idea

Anyone can create a design pattern. It typically starts as a
blog post or an article setting a name and explaining the

problem and the solution that was already implemented in
a real-world example.

Warning

Don't use design patterns just
because it sounds cool.

Failures while
using design
patterns

• Overengineering

• Misapplication

• Inflexibility

• Learning Curve for the team

• Complexity

• Performance Overhead

Definition

Antipattern

Practices that may initially seem beneficial but
ultimately lead to poor outcomes. They are typically
counterproductive and can introduce issues such as
increased complexity, decreased performance, and
maintainability problems.

Important

You probably know many design patterns even if you don't
recognize them initially as that

Definition

Vanilla JavaScript

The usage of the core language and
browser APIs to create web apps without
any additional libraries or frameworks
added on top

Vanilla JS: You Might Not Need a Framework
Frontend Masters Course

Design Patterns for VanillaJS Web Apps

Classic Web Specific Single Page Apps

Multi Page Apps Data and State
Management

Warning

We won't cover all the design
patterns available.

Classic Patterns in JavaScript

Classic Patterns • Typically around OOP solutions

• They are categorized in

• Creational

• Structural

• Behavioral

• In JavaScript (<= ES5) there were many
design patterns that

Important

In JavaScript there are many ways to implement the
same design pattern, thanks to the dynamic nature of

the language

Warning

Don't implement design patterns as if
you are writing Java. Use the ideas
and implement them with the power
of JavaScript.

Definition

Creational Design Patterns

They aim to solve the problems associated with
creating objects in a way that enhances flexibility
and reuse of existing code. The primary purpose of
creational patterns is to separate the logic of object
creation from the rest of the code.

Singleton • Problem to Solve: Ensure that a class has
only one instance and provide a global point
of access to it.

• Solution: Restrict instantiation of the class
to one object and provide a method to
access this instance.

• Use Cases:

• Managing a global configuration object.

• Database connection pooling.

• Logging service.

• State management.

Singleton

app.js

const Database = {

 open: async () => {}

 sendQuery: async (query) => {}

};

Factory • Problem to Solve: Object creation can
become complex and may involve multiple
steps, conditional logic, or dependencies.

• Solution: The factory pattern encapsulates
the object creation process within a separate
method or class, isolating it from the rest of
the application logic.

• Use Cases:

• UI element creation

• Different types of notifications

• Data Parsers

Factory

app.js

class PDFReader extends Reader {}

class CSVReader extends Reader {}

class SQLReader extends Reader {}

class Reader {

 static getReader(url) {

 // based on the return type of the URL

 // we return one of the possible readers

 }

}

Definition

Structural Design Patterns

Solutions for composing classes and objects to
form larger structures while keeping them flexible
and efficient. They focus on simplifying
relationships between entities to ensure system
maintainability and scalability.

Decorator • Problem to Solve: Add additional
functionality to objects dynamically without
modifying their structure.

• Solution: Wrap an object with another
object that adds the desired behavior.

• Use Cases:

• Adding logging, validation, or caching to
method calls.

• Extending user interface components with
additional features.

• Wrapping API responses to format or process
data before passing it on.

Decorator

app.js

class Button {

 render() {}

}

class DecoratedButton extends Button {

 render() {

 super.render();

 // Decorating code

 }

}

Adapter • Problem to Solve: Allow incompatible
interfaces to work together.

• Solution: Create an adapter that translates
one interface into another that a client
expects.

• Use Cases:

• Integrating third-party libraries with different
interfaces into your application.

• Adapting legacy code to work with new systems
or APIs.

• Converting data formats.

Mixins • Problem to Solve: Share functionality
between classes without using inheritance.

• Solution: Create a class containing methods
that can be used by other classes and apply
it to multiple classes.

• Use Cases:

• Integrating third-party libraries with different
interfaces into your application.

• Adapting legacy code to work with new systems
or APIs.

• Converting data formats.

Mixins

app.js

let sayHiMixin = {

 sayHi() { alert(`Hello ${this.name}`); }

};

class User {

 name

}

Object.assign(User.prototype, sayHiMixin);

Value Object • Problem to Solve: Represent a value that is
immutable and distinct from other objects
based on its properties rather than its identity.

• Solution: Create a class where instances are
considered equal if all their properties are
equal and ensure the object is immutable.

• Use Cases:

• Representing complex data types like money,
coordinates, or dates.

Value Object

app.js

class Money {
 constructor(amount, currency) {
 this.amount = amount;
 this.currency = currency;
 // Freeze the object to make it immutable
 Object.freeze(this);
 }
 equals(other) {
 return other instanceof Money &&
 this.amount === other.amount &&
 this.currency === other.currency;
 }
}

Definition

Behavioral Design Patterns

Deal with object interaction and responsibility
distribution. They focus on how objects
communicate and cooperate, ensuring that the
system is flexible and easy to extend.

Observer • Problem to Solve: Allow an object (subject)
to notify other objects (observers) about
changes in its state without requiring them to
be tightly coupled.

• Solution: Define a subject that maintains a
list of observers and notifies them of any
state changes, typically by calling one of their
methods.

• Use Cases:
• Event handlers

• Real-time notifications

• UI updates

Observer

app.js

class Subject {
 observers = new Set();
 addObserver(observer) { this.observers.add(observer); }
 removeObserver(observer) { this.observers.delete(observer); }

 notifyObservers(message) {
 this.observers.forEach(observer => observer(message));
 }
}

// Usage
subject1.addObserver(message => console.log("Event fired"));

Template
Method

• Problem to Solve: Define the skeleton of an
algorithm that will change on different
implementations.

• Solution: Create a class with a template
method that outlines the algorithm and
make subclasses to override specific steps of
the algorithm.

• Use Cases:
• Data Processing

• Form Validation

Template Method

app.js

class DataProcessor {
 process() {
 this.loadData();
 this.processData();
 this.saveData();
 }
}

class JSONDataProcessor extends DataProcessor {
 loadData() { /* code */ }
 processData() { /* code */ }
 saveData() { /* code */ }
}

Memento • Problem to Solve: Capture and externalize
an object's internal state so that it can be
restored later, without violating
encapsulation.

• Solution: Create anobject that stores the
state of the original object and provide
methods to save and restore the state.

• Use Cases:
• Undo/Redo functionality

• Saving a game or app session

• Time-travel debugging

Memento

app.js

class HistoryManager {
 history = [];
 push(state) {
 this.history.push(createMemento());
 }

 pop() {
 if (this.history.length === 0) return null;
 return this.history.pop();
 }
}

Command • Problem to Solve: How to avoid hard-wiring
a request from its invoker.

• Solution: create an object that is used
to encapsulate all information needed to
perform an action or trigger an event at a
later time

• Use Cases:
• Manage the actions of your app (such as Add,

Delete, print, save, load)

LAB

Todo Masters

• Simple Todo app with Vanilla JS

• The code works but it has several problems

• What if we want to:

• Save the list locally?

• Add keyboard shortcuts?

• Make it more complex in the future?

• Create an undo action?

Let's decouple the project using design
patterns with a JavaScript twist.

Lab time

Workshop Repo
firtman.github.io/webapp-patterns

Single Page Application Patterns

Definition

Single Page Application (SPA)

Type of web application that interacts with
the user by dynamically rewriting the current
web page with new data from the web server,
instead of loading entire new pages.

Lazy Load • Problem to Solve: Loading too many
JavaScript files when the app loads lead to
performance and memory usage problems.

• Solution: Use Dynamic Imports from
ECMAScript to load modules when needed.

• Use Cases:
• Load web components when you need them

• Load routes in SPA when you access them for the
first time

View
Transitions

• Problem to Solve: When changing between
routes, there are no transitions as in most
apps

• Solution: Use the new View Transitions API.

• Use Cases:
• Animate page change

• Morph elements between pages

HTML
Templates with
Interpolation

• Problem to Solve: When using templates for
Web Components, you can't express in the
HTML the bindings you want.

• Solution: Use a trick using with ES string
templates that will let us interpolate with
dynamic data from the HTML.

• Use Cases:
• Define in the HTML the bindings for the data

Routing
Metadata

• Problem to Solve: When working with SPA,
web page metadata, such as title, SEO data
and other information stays static not matter
the current URL.

• Solution: Update the metadata dynamically
when the route changes.

• Use Cases:
• Adapt the theme-color

• Change the title

• Update the favicon based on the current page

LAB

Coffee Masters

• SPA for a Coffee Store

• We will see some patterns implemented:
modularization with Web Components

• Check the course VanillaJS: You Might Not
Need a Framework for more info

• We will implement new patterns:

* Lazy Load

* View Transitions for SPA

* HTML Templates

* Routing Metadata

Lab time

Multiple Page Application Patterns

Definition

Multiple Page Application (MPA)

Traditional web application architecture
where each page of the application is served
separately using a new request from the
browser to the server.

View
Transitions for
MPA

• Problem to Solve: When changing pages,
users can see a white flash between page
loads

• Solution: Use the View Transitions API for
cross-documents.

• Use Cases:
• Make MPAs feel like SPAs

• Morph one element from one HTML to another
element in the next HTML

Prefetch • Problem to Solve: When the user wants to
navigate to a new page, there is a
performance penalty

• Solution: Use different techniques to
prefetch the next possible page, including
using the Cache Storage with Service
Workers or the Speculation Rules API.

• Use Cases:
• Prefetch or pre-render the most probable next

page on every HTML

HTML
Templates for
MPA

• Problem to Solve: Every new page
navigation downloads a whole HTML
including the header, footer and navigation
again.

• Solution: Use service workers to download
partial HTML files when you navigate to a
new page and marge them with a master
page template client-side.

• Use Cases:
• Improve Performance for MPAs

LAB

Cooking
Masters

• MPA for a Recipe website

• We will implement new patterns:

* View Transitions for MPA

* Prefetch

Lab time

Data and State Management Patterns

Promisify Data • Problem to Solve: Data management tends
to change in the future, and when working
with static hardcoded data is difficult to move
later to an async call.

• Solution: Use Promises to deliver all data,
including sync data by resolving the Promise
statically.

• Use Cases:
• Hardcoded data

• Access to sync APIs, such as Local Storage

Promisify Data

app.js

// Old version

function getImportantData() {

 return data;

}

// New version

function getImportantData() {

 return Promise.resolve(data);

}

Flux • Problem to Solve: In large scale
applications, managing the state of the app
becomes too complex and unpredictable.

• Solution: Use unidirectional data flow,
simplifying the architecture and
predictability of state changes.

• Use Cases:
• Data Storage

• Form intense applications

• E-commerce

• CMSs

Redux animation
Based on Flux

Lazy Sync • Problem to Solve: Syncing data to the
server takes time and it's not always possible

• Solution: Make all the sync to the server
asynchronously and detached from the UI.

• Use Cases:
• Save data and analytics

• Downloading news

• Updating app's components in the background

Idea

For more information on this topic, check the course
JavaScript in the Background at Frontend Masters

Proxy • Problem to Solve: We don't have always
control on the access to an object,
including to detect when some value
changes.

• Solution: Use a Proxy object instead of the
object directly.

• Use Cases:
• Reactive Programming

• Adding a security layer

• Logging all access to important objects

Idea

For more information on this topic, check the course Vanilla
JS You Might Not Need a Framework at Frontend Masters

Middleware • Problem to Solve: Handling tasks that affect
multiple parts of the application, like logging,
security checks, error handling,
authentication is difficult.

• Solution: insert layers of processing
between the initial request and the final
response, like going through a pipeline.

• Use Cases:
• API access

• Database access

More Advanced Ideas and Patterns

Web App
Classic Patterns • Progressive Web Apps

• Responsive Web Design

• Mobile First

• Offline First

Idea

For more information on this topic, check the course
Progressive Web Apps at Frontend Masters

Progressive
Enhancement

• Problem to Solve: Not every platform
supports all the APIs that we want to use.

• Solution: Start by offering a solution that
works everywhere and add layers on top of
that only if the platform supports the API.

• Use Cases:
• Access hardware and platform APIs

• Offline support

• Accessibility

HTML
Streaming

• Problem to Solve: On large pages, the
browser doesn't render the page or data until
all the response was sent and downloaded.

• Solution: Use Streams and Service Workers
to render the HTML response partially in
chunks as soon as they are received.

• Use Cases:
• Improve performance on initial page load

• Render data ATF initially

Streams with Service Workers

Virtual DOM • Problem to Solve: Working with the DOM
directly is expensive

• Solution: Create a virtual DOM in memory,
work with it and synchronize it with the real
DOM once it's a good time for it.

• Use Cases:
• Complex user interfaces with lot of elements

• Large lists with re-order and CRUD operations

Recap

Recap • What's a design pattern

• Classic Design Patterns in
JavaScript

• Patterns for SPA

• Patterns for MPA

• Patterns for Data and State
Management

• Other ideas

Thanks!

Maximiliano Firtman
firt.dev

x.com/firt

linkedin.com/in/firtman

github.com/firtman

